Local maxima and minima

Questions

Question 1. Suppose that f is a function such that $\nabla f(2,4)=\langle 0,0\rangle$ and

$$
\left[\begin{array}{ll}
f_{x x}(2,4) & f_{x y}(2,4) \\
f_{x y}(2,4) & f_{y y}(2,4)
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \\
2 & -2
\end{array}\right]
$$

Is $(2,4)$ a local minimum, local maximum, saddle point, or is there not enough information to tell?
Question 2. Let $f(x, y)$ be a (nice) function whose domain is the entirety of \mathbb{R}^{2}. Which of the following statements are true?
(a) f can have a local maximum but no absolute maximum.
(b) f can have an absolute maximum but no local maximum.
(c) f must have an absolute maximum when constrained to $x y=1$.
(d) If f has a local minimum or maximum at a point, then $\nabla f=\mathbf{0}$ at that point.
(e) If $\nabla f=\mathbf{0}$ at a point, then f has a local minimum or maximum at that point.
(f) f must have an absolute maximum when constrained to $x^{2}+y^{2} \leq 1$.

Question 3 (Stewart \$14.7\#40). Consider the function $f(x, y)=3 x e^{y}-x^{3}-e^{3 y}$.
(a) f has exactly one critical point. Find it.
(b) Using the 2nd derivative test, show that this critical point is a local maximum.
(c) Is this point also an absolute maximum?

